4.3 Article

Disrupting glucose-6-phosphate isomerase fully suppresses the Warburg effect and activates OXPHOS with minimal impact on tumor growth except in hypoxia

Journal

ONCOTARGET
Volume 8, Issue 50, Pages 87623-87637

Publisher

IMPACT JOURNALS LLC
DOI: 10.18632/oncotarget.21007

Keywords

glycolysis; OXPHOS; pentose phosphate pathway; glucose-6-phosphate isomerase; tumor growth

Funding

  1. Monique Cunha de Padua from the Federal University of Parana, Brazil
  2. Giulia Delodi from Genova University [2016/102]
  3. Fondation ARC on Cancer Research [PDF20151203643]
  4. Centre Scientifique de Monaco
  5. GEMLUC

Ask authors/readers for more resources

As Otto Warburg first observed, cancer cells largely favor fermentative glycolysis for growth even under aerobic conditions. This energy paradox also extends to rapidly growing normal cells indicating that glycolysis is optimal for fast growth and biomass production. Here we further explored this concept by genetic ablation of fermentative glycolysis in two fast growing cancer cell lines: human colon adenocarcinoma LS174T and B16 mouse melanoma. We disrupted the upstream glycolytic enzyme, glucose-6-phosphate isomerase (GPI), to allow cells to re-route glucose-6-phosphate flux into the pentose-phosphate branch. Indeed, GPI-KO severely reduced glucose consumption and suppressed lactic acid secretion, which reprogrammed these cells to rely on oxidative phosphorylation and mitochondrial ATP production to maintain viability. In contrast to previous pharmacological inhibition of glycolysis that suppressed tumor growth, GPI-KO surprisingly demonstrated only a moderate impact on normoxic cell growth. However, hypoxic (1% O-2) cell growth was severely restricted. Despite in vitro growth restriction under hypoxia, tumor growth rates in vivo were reduced less than 2-fold for both GPI-KO cancer cell lines. Combined our results indicate that exclusive use of oxidative metabolism has the capacity to provide metabolic precursors for biomass synthesis and fast growth. This work and others clearly indicate that metabolic cancer cell plasticity poses a strong limitation to anticancer strategies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available