4.5 Article

γ-aminobutyric acid (GABA) confers chromium stress tolerance in Brassica juncea L. by modulating the antioxidant defense and glyoxalase systems

Journal

ECOTOXICOLOGY
Volume 26, Issue 5, Pages 675-690

Publisher

SPRINGER
DOI: 10.1007/s10646-017-1800-9

Keywords

Chromium; Metal chelation; Methylglyoxal; Phytoremediation; Reactive oxygen species

Funding

  1. Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan

Ask authors/readers for more resources

Chromium (Cr) toxicity is hazardous to the seed germination, growth, and development of plants. gamma-aminobutyric acid (GABA) is a non-protein amino acid and is involved in stress tolerance in plants. To investigate the effects of GABA in alleviating Cr toxicity, we treated eight-d-old mustard (Brassica juncea L.) seedlings with Cr (0.15 and 0.3 mM K2CrO4, 5 days) alone and in combination with GABA (125 A mu M) in a semi-hydroponic medium. The roots and shoots of the seedlings accumulated Cr in a dose-dependent manner, which led to an increase in oxidative damage [lipid peroxidation; hydrogen peroxide (H2O2) content; superoxide (O-2 (aEuro cent-)) generation; lipoxygenase (LOX) activity], methylglyoxal (MG) content, and disrupted antioxidant defense and glyoxalase systems. Chromium stress also reduced growth, leaf relative water content (RWC), and chlorophyll (chl) content but increased phytochelatin (PC) and proline (Pro) content. Furthermore, supplementing the Cr-treated seedlings with GABA reduced Cr uptake and upregulated the non-enzymatic antioxidants (ascorbate, AsA; glutathione, GSH) and the activities of the enzymatic antioxidants including ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), glutathione reductase (GR), glutathione peroxidase (GPX), superoxide dismutase (SOD), catalase (CAT), glyoxalase I (Gly I), and glyoxalase II (Gly II), and finally reduced oxidative damage. Adding GABA also increased leaf RWC and chl content, decreased Pro and PC content, and restored plant growth. These findings shed light on the effect of GABA in improving the physiological mechanisms of mustard seedlings in response to Cr stress.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available