4.7 Review

Intestinal epithelial claudins: expression and regulation in homeostasis and inflammation

Journal

ANNALS OF THE NEW YORK ACADEMY OF SCIENCES
Volume 1397, Issue 1, Pages 66-79

Publisher

WILEY
DOI: 10.1111/nyas.13360

Keywords

epithelium; intestine; mucosal barrier; tight junction; claudins; inflammation

Funding

  1. NIH [RO1DK59888, RO1DK055679]
  2. Crohn's and Colitis Foundation of America Research Fellowship Award [326912]

Ask authors/readers for more resources

The intestinal epithelium forms a highly dynamic and selective barrier that controls absorption of fluid and solutes while restricting pathogen access to underlying tissues. Barrier properties are achieved by intercellular junctions that include an apical tight junction (TJ) and subjacent adherens junctions and desmosomes. The TJ tetraspan claudin proteins form pores between epithelial cells to control paracellular fluid and ion movement. In addition to regulation of barrier function, claudin family members control epithelial homeostasis and are expressed in a spatiotemporal manner in the intestinal crypt-luminal axis. This delicate balance of physiologic differential claudin protein expression is altered during mucosal inflammation. Inflammatory mediators influence transcriptional regulation, as well as endocytic trafficking, targeting, and retention of claudins in the TJ. Increased expression of intestinal epithelial claudin-1, -2, and -18 with downregulation of claudin-3, -4, -5, -7, -8, and -12 has been observed in intestinal inflammatory disorders. Such changes in claudin proteins modify the epithelial barrier function in addition to influencing epithelial and mucosal homeostasis. An improved understanding of the regulatory mechanisms that control epithelial claudin proteins will provide strategies to strengthen the epithelial barrier function and restore mucosal homeostasis in inflammatory disorders.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available