4.7 Article

Core-shell and co-doped nanoscale metal-organic particles (NMOPs) obtained via post-synthesis cation exchange for multimodal imaging and synergistic thermo-radiotherapy

Journal

NPG ASIA MATERIALS
Volume 9, Issue -, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/am.2016.205

Keywords

-

Funding

  1. National Basic Research Programs of China (973 Program) [2012CB932600]
  2. National Natural Science Foundation of China [51525203, 51132006, 81403120]
  3. Juangsu Natural Science Fund for Distinguished Young Scholars [BK20130005]
  4. Collaborative Innovation Center of Suzhou Nano Science and Technology
  5. Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions
  6. Macao Science and Technology Development Fund [062/2013/A2]
  7. Research Fund of the University of Macau [MYRG2014-00033-ICMS-QRCM, MYRG2014-00051-ICMS-QRCM]

Ask authors/readers for more resources

Nanoscale metal-organic particles (NMOPs) have recently shown great promise in the area of nanomedicine owing to their tunable compositions, highly enriched functionalities, well-defined sizes/shapes and intrinsic biodegradability. Herein, we describe the fabrication of NMOPs with both core-shell and co-doped structures via a post-synthesis cation exchange method for applications in multimodal imaging and combined photothermal and radiation therapy of cancer. Template NMOPs containing Mn2+ and IR825, a near-infrared (NIR) dye, are first synthesized and then mixed with Hf4+ to obtain core-shell and co-doped Mn/Hf-IR825 NMOPs depending on the dose of added Hf4+ ions. In these NMOPs, Mn2+ offers strong T1 magnetic resonance (MR) contrast, Hf4+ is a high-Z element with excellent computed tomography signal enhancement ability and radio-sensitization capability, and IR825 exhibits rather high NIR absorbance. After coating with polydopamine (PDA) and further conjugation with polyethylene glycol (PEG), the co-doped Mn/Hf-IR825@PDA-PEG particles (NMOP-PEG) showed efficient tumor-homing ability after intravenous injection, as illustrated by MR and photoacoustic (PA) imaging. Utilizing NMOP-PEG achieved excellent tumor killing efficacy through in vivo photothermal and radiation synergistic therapy in our mouse tumor model experiments. Importantly, our NMOP-PEG showed no appreciable toxicity to the treated mice and could be efficiently excreted. Our work presents a facile method to fabricate NMOP-PEG with multi-component structures as a biodegradable, multifunctional nanoplatform for multimodal image-guided combination cancer therapy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available