4.6 Article

Topological crystalline materials: General formulation, module structure, and wallpaper groups

Journal

PHYSICAL REVIEW B
Volume 95, Issue 23, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.95.235425

Keywords

-

Funding

  1. JSPS
  2. KAKENHI on Innovative Areas from JSPS of Japan [JP15H05855]
  3. JSPS KAKENHI [JP15K04871]
  4. Grants-in-Aid for Scientific Research [15H05855, 15K04871] Funding Source: KAKEN

Ask authors/readers for more resources

We formulate topological crystalline materials on the basis of the twisted equivariant K theory. Basic ideas of the twisted equivariant K theory are explained with application to topological phases protected by crystalline symmetries in mind, and systematic methods of topological classification for crystalline materials are presented. Our formulation is applicable to bulk gapful topological crystalline insulators/superconductors and their gapless boundary and defect states, as well as bulk gapless topological materials such as Weyl and Dirac semimetals, and nodal superconductors. As an application of our formulation, we present a complete classification of topological crystalline surface states, in the absence of time-reversal invariance. The classification works for gapless surface states of three-dimensional insulators, as well as full gapped two-dimensional insulators. Such surface states and two-dimensional insulators are classified in a unified way by 17 wallpaper groups, together with the presence or the absence of (sublattice) chiral symmetry. We identify the topological numbers and their representations under the wallpaper group operation. We also exemplify the usefulness of our formulation in the classification of bulk gapless phases. We present a class of Weyl semimetals and Weyl superconductors that are topologically protected by inversion symmetry.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available