4.8 Article

Composite Polymer Electrolytes with Li7La3Zr2O12 Garnet-Type Nanowires as Ceramic Fillers: Mechanism of Conductivity Enhancement and Role of Doping and Morphology

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 9, Issue 26, Pages 21773-21780

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.7b03806

Keywords

composite polymer electrolyte; garnet-type solid electrolyte; nanowires; electrospinning; NMR; polyacrylonitrile

Funding

  1. NSF [DMR-1553519, DMR-1508404, DMR-1157490]
  2. Direct For Mathematical & Physical Scien
  3. Division Of Materials Research [1508404] Funding Source: National Science Foundation
  4. Division Of Materials Research
  5. Direct For Mathematical & Physical Scien [1553519] Funding Source: National Science Foundation

Ask authors/readers for more resources

Composite polymer solid electrolytes (CPEs) containing ceramic fillers embedded inside a polymer-salt matrix show great improvements in Li+ ionic conductivity compared to the polymer electrolyte alone. Lithium lanthanum zirconate (Li7La3Zr2O12, LLZO) with a garnet-type crystal structure is a promising solid Li+ conductor. We show that by incorporating only 5 wt % of the ceramic filler comprising undoped, cubic -phase LLZO nanowires prepared by electrospinning, the robin temperature ionic conductivity of a polyacrylonitrile-LiCIO4-based composite is increased 3 orders of magnitude to 1.31 X 10(-4) S/cm. Al-doped and Ta-doped LLZO nanowires are also synthesized and utilized as fillers, but the conductivity enhancement is similar as for the undoped LLZO nanowires. Solid-state nuclear magnetic resonance (NMR) studies show that LLZO NWs partially modify the PAN polymer matrix and create preferential pathways for Li+ conduction through the modified polymer regions. CPEs with LLZO nanoparticles and Al2O3 nanowire fillers are also studied to elucidate the role of filler type (active vs passive), LLZO composition (undoped vs doped), and morphology (nanowire vs nanoparticle) on the CPE conductivity. It is demonstrated that both intrinsic Li+ conductivity and nanowire morphology are needed for optimal performance when using 5 wt % of the ceramic filler in the CPE.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available