4.7 Article

Loss-of-Function Variants in MYLK Cause Recessive Megacystis Microcolon Intestinal Hypoperistalsis Syndrome

Journal

AMERICAN JOURNAL OF HUMAN GENETICS
Volume 101, Issue 1, Pages 123-129

Publisher

CELL PRESS
DOI: 10.1016/j.ajhg.2017.05.011

Keywords

-

Funding

  1. National Human Genome Research Institute
  2. National Heart, Lung, and Blood Institute [UM1 HG006542]
  3. Stitching Sophia Kinderziekenhuis Fonds [S15-30]

Ask authors/readers for more resources

Megacystis microcolon intestinal hypoperistalsis syndrome (MMIHS) is a congenital disorder characterized by loss of smooth muscle contraction in the bladder and intestine. To date, three genes are known to be involved in MMIHS pathogenesis: ACTG2, MYH11, and LMOD1. However, for approximately 10% of affected individuals, the genetic cause of the disease is unknown, suggesting that other loci are most likely involved. Here, we report on three MMIHS-affected subjects from two consanguineous families with no variants in the known MMIHS-associated genes. By performing homozygosity mapping and whole-exome sequencing, we found homozygous variants in myosin light chain kinase (MYLK) in both families. We identified a 7 bp duplication (c.3838_3844dupGAAAGCG [p.Glu1282_Glyfs*51]) in one family and a putative splice-site variant (c.3985_5C>A) in the other. Expression studies and splicing assays indicated that both variants affect normal MYLK expression. Because MYLK encodes an important kinase required for myosin activation and subsequent interaction with actin filaments, it is likely that in its absence, contraction of smooth muscle cells is impaired. The existence of a conditional-Mylk-knockout mouse model with severe gut dysmotility and abnormal function of the bladder supports the involvement of this gene in MMIHS pathogenesis. In aggregate, our findings implicate MYLK as a gene involved in the recessive form of MMIHS, confirming that this disease of the visceral organs is heterogeneous with a myopathic origin.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available