4.7 Article

Quantitative source apportionment and human toxicity of indoor trace metals at university buildings

Journal

BUILDING AND ENVIRONMENT
Volume 121, Issue -, Pages 238-246

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.buildenv.2017.05.032

Keywords

Indoor air quality; Particulate matter; Human health risk; Source apportionment; Carcinogenic; Non-carcinogenic

Funding

  1. UKM [FRGS/2/2013/STWN01/UKM/03/1, DLP-2013-034]

Ask authors/readers for more resources

This study focuses on the source apportionment principal component analysis of indoor particulate matter (PM10) composition in two university buildings with different ventilation systems. A low volume sampler using Teflon filter paper was used to collect the PM10 samples and inductively coupled plasma mass spectrometry was used to determine the concentration of heavy metals. The potential human health damage due to the inhalation of carcinogenic and non-carcinogenic elements was also determined based on the USEPA standard. The results showed PM10 concentrations recorded in Building 1 and Building 2 ranged between 19.1 and 237 mu g m(-3) and 23.4-159 mu g m(-3), respectively. In Building 1, the principal component analysis (PCA) and multiple linear regression (MLR) showed that the main sources of pollutants in PM10 were the crustal source (20%), indoor-induced (8%), urban origin (7%) and the Earth's crust (6%). The main sources of pollutants in Building 2 were combustion (21%), biogenic (6%), anthropogenic (4%) and crustal (3%). The effective lifetime carcinogenic risks (ELCR) in Buildings 1 and 2 were 1.90E-3 and 1.65E-4, respectively. The hazard quotient (HQ) represents the non-carcinogenic risk, with 7.73 and 6.46 in Building 1 and Building 2, respectively. These ECLR and HQ values exceed the acceptable limit and are higher compared to the standard from the United States Environmental Protection Agency's Guidelines for the assessment of carcinogen risk. It was suggested that different types of ventilation influence the PM10 distribution in buildings and associated risks towards the occupant's health and indoor air quality. (C) 2017 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available