4.3 Article

High-Performance Nanocatalyst for Adsorptive and Photo-Assisted Fenton-Like Degradation of Phenol: Modeling Using Artificial Neural Networks

Journal

CHEMICAL ENGINEERING COMMUNICATIONS
Volume 204, Issue 7, Pages 729-738

Publisher

TAYLOR & FRANCIS INC
DOI: 10.1080/00986445.2017.1311253

Keywords

Activated carbon; Artificial neural network; Fenton-like degradation; Phenol; ZnO nanoparticles

Ask authors/readers for more resources

High-performance activated carbon-zinc oxide (Ac-ZnO) nanocatalyst was fabricated via the microwave-assisted technique. Ac-ZnO was characterized and the results indicated that Ac-ZnO is stable, had a band gap of 3.26eV and a surface area of 603.5m(2)g(-1), and exhibited excellent adsorptive and degrading potentials. About 93% phenol was adsorbed within 550min of reaction by Ac-ZnO. Impressively, a complete degradation was achieved in 90min via a photo-Fenton/Ac-ZnO system under optimum conditions. An artificial neural network (ANN) model was developed and applied to study the relative significance of input variables affecting the degradation of phenol in a photo-Fenton process. The ANN results indicate that increases in both H2O2 and Ac-ZnO dosage enhanced the rate of phenol degradation. The highest rate constant at the optimum conditions was 0.093min(-1) and it was found to be consistent with the ANN-predicted rate constant (0.095min(-1)).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available