4.6 Review

Blood-Brain Barrier Protection as a Therapeutic Strategy for Acute Ischemic Stroke

Journal

AAPS JOURNAL
Volume 19, Issue 4, Pages 957-972

Publisher

SPRINGER
DOI: 10.1208/s12248-017-0091-7

Keywords

Blood-brain barrier; Ischemic stroke; Matrix metalloproteinases; Tight junction; Tissue-type plasminogen activator

Ask authors/readers for more resources

The blood-brain barrier (BBB) is a vital component of the neurovascular unit (NVU) containing tight junctional (TJ) proteins and different ion and nutrient transporters which maintain normal brain physiology. BBB disruption is a major pathological hallmark in the course of ischemic stroke which is regulated by the actions of different factors working at different stages of cerebral ischemia including matrix metalloproteinases (MMPs), inflammatory modulators, vesicular trafficking, oxidative pathways, and junctional-cytoskeletal interactions. These components interact further to disrupt maintenance of both the paracellular and transport barriers of the central nervous system (CNS) to worsen ischemic brain injury and the propensity for hemorrhagic transformation (HT) associated with injury and/or thrombolytic therapy with tissue-type plasminogen activator (tPA). We propose that these complex molecular pathways should be evaluated further so that they could be targeted alone or in combination to protect the BBB during cerebral ischemia. These types of novel interventions should be guided by advanced imaging techniques for better diagnosis of BBB damage which may exert significant therapeutic benefit including the extension of therapeutic window of tPA. This review will focus on the different stages and mechanisms of BBB damage in acute ischemic stroke and novel therapeutic strategies to target those pathways for better therapeutic outcome in stroke.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available