4.7 Article

Safety parameter considerations of anodal transcranial Direct Current Stimulation in rats

Journal

BRAIN BEHAVIOR AND IMMUNITY
Volume 64, Issue -, Pages 152-161

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.bbi.2017.04.008

Keywords

tDCS; Rat cortex; Direct Current Stimulation; Current density; tDCS modeling; Microglia

Funding

  1. Air Force Office of Scientific Research [13RH14COR, 16RHCOR362]
  2. NIH [5R03EB017410-02, 5R21EB017510-02, 5R01MH092926-05]
  3. DOD [FA9550-13-1-0073]

Ask authors/readers for more resources

A commonly referenced transcranial Direct Current Stimulation (tDCS) safety threshold derives from tDCS lesion studies in the rat and relies on electrode current density (and related electrode charge density) to support clinical guidelines. Concerns about the role of polarity (e.g. anodal tDCS), sub-lesion threshold injury (e.g. neuroinflammatory processes), and role of electrode montage across rodent and human studies support further investigation into animal models of tDCS safety. Thirty-two anesthetized rats received anodal tDCS between 0 and 5 mA for 60 min through one of three epicranial electrode montages. Tissue damage was evaluated using hemotoxylin and eosin (H&E) staining, Iba-1 immunohistochemistry, and computational brain current density modeling. Brain lesion occurred after anodal tDCS at and above 0.5 mA using a 25.0 mm(2) electrode (electrode current density: 20.0 A/m(2)). Lesion initially occurred using smaller 10.6 mm(2) or 5.3 mm(2) electrodes at 0.25 mA (23.5 A/m(2)) and 0.5 mA (94.2 A/m(2)), respectively. Histological damage was correlated with computational brain current density predictions. Changes in microglial phenotype occurred in higher stimulation groups. Lesions were observed using anodal tDCS at an electrode current density of 20.0 A/m(2) which is below the previously reported safety threshold of 142.9 A/m(2) using cathodal tDCS. The lesion area is not simply predicted by electrode current density (and so not by charge density as duration was fixed); rather computational modeling suggests average brain current density as a better predictor for anodal tDCS. Nonetheless, under the assumption that rodent epicranial stimulation is a hypersensitive model, an electrode current density of 20.0 A/m(2) represents a conservative threshold for clinical tDCS, which typically uses an electrode current density of 2 A/m(2) when electrodes are placed on the skin (resulting in a lower brain current density). (C) 2017 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available