3.9 Article

Coupled heat and moisture transfer of a single mung bean grain based on IR heating

Publisher

WORLD SCIENTIFIC PUBL CO PTE LTD
DOI: 10.1142/S1793962317400013

Keywords

Mung bean; infrared heating; finite element modeling; simulation; COMSOL multiphysics

Ask authors/readers for more resources

Infrared (IR) heating is often used for the treatment of liquid and solid foods. IR treatment is known to enhance their shelf life by reducing moisture content and inactivating the microorganisms. Mung bean (a type of pulse from India) is a short season crop; suffers maximum storage loss when compared to other legume grains. The losses are due to moisture and temperature movements. Drying of grains is an important postharvest operation. IR drying is advantageous over the conventional drying methods. In this paper, the drying of mung bean is considered. An experimental setup is developed to obtain the required moisture and temperature profiles. The equivalent model is simulated using COMSOL multiphysics software and the percentage error between the experimental and simulated models is calculated. Results of numerical implementation are presented and possible further extensions are identified.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.9
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available