4.8 Article

AuPd/3DOM-TiO2 catalysts for photocatalytic reduction of CO2: High efficient separation of photogenerated charge carriers

Journal

APPLIED CATALYSIS B-ENVIRONMENTAL
Volume 209, Issue -, Pages 228-239

Publisher

ELSEVIER
DOI: 10.1016/j.apcatb.2017.02.076

Keywords

3DOM materials; TiO2; AuPd nanoparticles; Photocatalysis; CO2 conversion

Funding

  1. National Natural Science Foundation of China [21673142, 21477164]
  2. Beijing Nova Program [Z141109001814072]
  3. Specialized Research Fund for the Doctoral Program of Higher Education of China [20130007120011]

Ask authors/readers for more resources

The photocatalytic conversion of CO2 and H2O into value-added chemicals using sunlight is significant to solve energy crisis and environmental problems. In this work, a series of novel bifunctional catalysts of core-shell structured AuPd nanoparticles decorated 3DOM TiO2 (AuPd/3DOM-TiO2) w were successfully fabricated via a facile one-pot method of gas bubbling-assisted membrane reduction (GBMR). AuPd/3DOM-TiO2 catalysts show uniform 3D ordered macroporous structure, and the slow photon effect of 3DOM-TiO2 as a photonic crystal can enhance light-harvesting efficiency. AuPd nanoparticles are highly dispersed on the surface of 3DOM-TiO2 carrier. Since bimetallic AuPd nanoparticles with the relatively low Fermi level have good capacity of trapping electron, they can efficiently promote the separation of photogenerated electron-hole pairs in TiO2. The AuPd/3DOM-TiO2 catalysts exhibit excellent photocatalytic activity for CO2 reduction with H2O to CH4 under light irradiation. Among the studied catalysts, Au3Pd1/3DOM-TiO2 catalyst exhibits the highest photocatalytic activity and selectivity for CO2 reduction, e.g., its formation rate of CH4 is 18.5 mol g(-1) h(-1) and its selectivity to CH4 production by CO2 reduction is 93.9%. The possible mechanism of AuPd/3DOM-TiO2 catalysts for photocatalytic CO2 reduction is also proposed, and it would guide further design and synthesis of high efficient photocatalysts for CO2 reduction with H2O. (C) 2017 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available