4.8 Article

Absolute Protein Quantification by Mass Spectrometry: Not as Simple as Advertised

Journal

ANALYTICAL CHEMISTRY
Volume 89, Issue 14, Pages 7406-7415

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.analchem.7b00858

Keywords

-

Ask authors/readers for more resources

Stable isotopically labeled (SIL) tryptic peptides, cleavable SIL peptides, and a full-length SIL protein were compared for internal calibration (i.e., as internal calibrators) and external calibration (i.e., as internal standards) when quantifying three forms of unlabeled, human thyroglobulin (Tg) by bottom-up protein analysis. All SIL materials and human proteins were standardized by amino acid analysis to ensure traceability of measurements and allow confident assignment of accuracy. The three forms of human Tg quantified were (1) the primary reference material BCR457-a native protein purified from human thyroids, (2) a commercially available form also purified from human thyroids, and (3) a full-length recombinant form expressed and purified from a human embryonic kidney 293 cell-line. Collectively, the results unequivocally demonstrate the lack of commutability of tryptic and cleavable SIL peptides as internal calibrators across various bottom-up assays (i.e., denaturing/digestion conditions). Further, the results demonstrate the potential during external calibration for surrogate protein calibrators (i.e., recombinant proteins) to produce inaccurate concentration assignments of native protein analytes by bottom-up analysis due to variance in digestion efficiency, which is not alleviated by altering denaturation/digestion stringency and indicates why protein calibrators may not be commutable in bottom-up protein assays. These results have implications regarding the veracity of absolute protein concentration assignments by bottom-up assays using peptide calibrators, as well as protein calibrators, given that absolute accuracy was not universally observed. Nevertheless, these results support the use of recombinant SIL proteins as internal standards over SIL peptides due to their ability to better mimic the digestion of human-derived proteins and mitigate bias due to digestion-based matrix effects that were observed during external calibration.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available