4.7 Article

From polyelectrolyte complexes to polyelectrolyte multilayers: Electrostatic assembly, nanostructure, dynamics, and functional properties

Journal

ADVANCES IN COLLOID AND INTERFACE SCIENCE
Volume 244, Issue -, Pages 71-89

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.cis.2016.12.004

Keywords

Polyelectrolyte complexes; Polyelectrolyte multilayers; Electrostatic assembly; Layer-by-layer assembly; Thin films; Stimuli response

Funding

  1. Donors of the Petroleum Research Fund [50534-DNI7]
  2. University at Buffalo Interdisciplinary Research Development Fund (IRDF)

Ask authors/readers for more resources

Polyelectrolyte complexes (PECs) are three-dimensional macromolecular structures formed by association of oppositely charged polyelectrolytes in solution. Polyelectrolyte multilayers (PEMs) can be considered a special case of PECs prepared by layer-by-layer (LbL) assembly that involves sequential deposition of molecular-thick poly electrolyte layers with nanoscale control over the size, shape, composition and internal organization. Although many functional PEMs with novel physical and chemical characteristics have been developed, the current practical applications of PEMs are limited to those that require only a few bilayers and are relatively easy to prepare. The viability of such engineered materials can be realized only after overcoming the scientific and engineering challenges of understanding the kinetics and transport phenomena involved in the multilayer growth and the factors governing their final structure, composition, and response to external stimuli. There is a great need to model PEMs and to connect PEM behavior with the characteristics of the PEC counterparts to allow for prediction of performance and better design of multilayered materials. This review focuses on the relationship between PEMs and PECs. The constitutive interactions, the thermodynamics and kinetics of polyelectrolyte complexation and PEM formation, PEC phase behavior, PEM growth, the internal structure and stability in PEMs and PECs, and their response to external stimuli are presented. Knowledge of such interactions and behavior can guide rapid fabrication of PEMs and can aid their applications as nanocomposites, coatings, nano-sized reactors, capsules, drug delivery systems, and in electrochemical and sensing devices. The challenges and opportunities in future research directions are also discussed. (C) 2016 Published by Elsevier B.V.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available