4.8 Article

Silica Nanoparticle as a Lymph Node Targeting Platform for Vaccine Delivery

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 9, Issue 28, Pages 23466-23475

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.7b06024

Keywords

silica nanoparticle; electrostatic binding; vaccine delivery; lymph node targeting; cancer

Funding

  1. American Cancer Society [11-053-01-IRG]

Ask authors/readers for more resources

Nanoparticles have emerged as the platform of choice to improve the efficacy and safety of subunit vaccines. A major challenge underlying the use of nanomaterials in vaccines lies in the particle designs that can efficiently target and activate the antigen-presenting cells, especially dendritic cells. Here we show a toll-like receptor 9 (TLR-9) agonist and antigen coloaded, silica nanoparticles (SiNPs) are able to accumulate in antigen presenting cells in the draining lymph nodes after injection. Vaccine loaded SiNPs led to dramatically enhanced induction of antigen-specific B and T cell responses as compared to soluble vaccines, which in turn drove a protective antitumoral immunity in a murine tumor model. Additionally, SiNP vaccines greatly reduced the production of systemic proinflammatory cytokines and completely abrogated splenomegaly, key systemic toxicities of TLR-9 agonists that limit their advances in clinical applications. Our results demonstrate that structure optimized silica nanocarriers can be used as an effective and safe platform for targeted delivery of subunit vaccines.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available