4.5 Review

Two-Dimensional Zinc Oxide Nanostructures for Gas Sensor Applications

Journal

CHEMOSENSORS
Volume 5, Issue 2, Pages -

Publisher

MDPI
DOI: 10.3390/chemosensors5020017

Keywords

two-dimensional; zinc oxide; ZnO; nanostructures; gas sensors

Funding

  1. University of Messina

Ask authors/readers for more resources

Two-dimensional (2D) nanomaterials, due to their unique physical and chemical properties, are showing great potential in catalysis and electronic/optoelectronic devices. Moreover, thanks to the high surface to volume ratio, 2D materials provide a large specific surface area for the adsorption of molecules, making them efficient in chemical sensing applications. ZnO, owing to its many advantages such as high sensitivity, stability, and low cost, has been one of the most investigated materials for gas sensing. Many ZnO nanostructures have been used to fabricate efficient gas sensors for the detection of various hazardous and toxic gases. This review summarizes most of the research articles focused on the investigation of 2D ZnO structures including nanosheets, nanowalls, nanoflakes, nanoplates, nanodisks, and hierarchically assembled nanostructures as a sensitive material for conductometric gas sensors. The synthesis of the materials and the sensing performances such as sensitivity, selectivity, response, and recovery times as well as the main influencing factors are summarized for each work. Moreover, the effect of mainly exposed crystal facets of the nanostructures on sensitivity towards different gases is also discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available