4.8 Article

Species Interactions Drive Fish Biodiversity Loss in a High-CO2 World

Journal

CURRENT BIOLOGY
Volume 27, Issue 14, Pages 2177-+

Publisher

CELL PRESS
DOI: 10.1016/j.cub.2017.06.023

Keywords

-

Funding

  1. ARC future fellowship [FT120100183]
  2. ARC Discovery grant [DP150104263]
  3. Environment Institute (The University of Adelaide)
  4. Science without Borders through CAPES (Coordination for the Improvement of Higher Education Personnel) Brazil [13058134]

Ask authors/readers for more resources

Accelerating climate change is eroding the functioning and stability of ecosystems by weakening the interactions among species that stabilize biological communities against change [1]. A key challenge to forecasting the future of ecosystems centers on how to extrapolate results from short-term, single-species studies to community-level responses that are mediated by key mechanisms such as competition, resource availability (bottom-up control), and predation (top-down control) [2]. We used CO2 vents as potential analogs of ocean acidification combined with in situ experiments to test current predictions of fish biodiversity loss and community change due to elevated CO2 [3] and to elucidate the potential mechanisms that drive such change. We show that high risk-taking behavior and competitive strength, combined with resource enrichment and collapse of predator populations, fostered already common species, enabling them to double their populations under acidified conditions. However, the release of these competitive dominants from predator control led to suppression of less common and subordinate competitors that did not benefit from resource enrichment and reduced predation. As a result, local biodiversity was lost and novel fish community compositions were created under elevated CO2. Our study identifies the species interactions most affected by ocean acidification, revealing potential sources of natural selection. We also reveal how diminished predator abundances can have cascading effects on local species diversity, mediated by complex species interactions. Reduced overfishing of predators could therefore act as a key action to stall diversity loss and ecosystem change in a high-CO2 world.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available