4.8 Article

Enhanced Depolymerization of Actin Filaments by ADF/Cofilin and Monomer Funneling by Capping Protein Cooperate to Accelerate Barbed-End Growth

Journal

CURRENT BIOLOGY
Volume 27, Issue 13, Pages 1990-+

Publisher

CELL PRESS
DOI: 10.1016/j.cub.2017.05.036

Keywords

-

Funding

  1. ERC [249982]
  2. EC [241548]
  3. European Research Council (ERC) [249982] Funding Source: European Research Council (ERC)

Ask authors/readers for more resources

A living cell's ability to assemble actin filaments in intracellular motile processes is directly dependent on the availability of polymerizable actin monomers, which feed polarized filament growth [1, 2]. Continued generation of the monomer pool by filament disassembly is therefore crucial. Disassemblers like actin depolymerizing factor (ADF)/cofilin and filament cappers like capping protein (CP) are essential agonists of motility [3-8], but the exact molecular mechanisms by which they accelerate actin polymerization at the leading edge and filament turnover has been debated for over two decades [9-12]. Whereas filament fragmentation by ADF/cofilin has long been demonstrated by total internal reflection fluorescence (TIRF) [13, 14], filament depolymerization was only inferred from bulk solution assays [15]. Using microfluidics-assisted TIRF microscopy, we provide the first direct visual evidence of ADF's simultaneous severing and rapid depolymerization of individual filaments. Using a conceptually novel assay to directly visualize ADF's effect on a population of pre-assembled filaments, we demonstrate how ADF's enhanced pointed-end depolymerization causes an increase in polymerizable actin monomers, thus promoting faster barbed-end growth. We further reveal that ADF-enhanced depolymerization synergizes with CP's long-predicted monomer funneling'' [16] and leads to skyrocketing of filament growth rates, close to estimated lamellipodial rates. The funneling model'' hypothesized, on thermodynamic grounds, that at high enough extent of capping, the few non-capped filaments transiently grow much faster [15], an effect proposed to be very important for motility. We provide the first direct microscopic evidence of monomer funneling at the scale of individual filaments. These results significantly enhance our understanding of the turnover of cellular actin networks.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available