4.7 Article

Nitrogen transformations along a shallow subterranean estuary

Journal

BIOGEOSCIENCES
Volume 14, Issue 13, Pages 3321-3336

Publisher

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/bg-14-3321-2017

Keywords

-

Funding

  1. Canada Research Chair Program
  2. Natural Sciences and Engineering Research Council of Canada
  3. Universite du Quebec a Rimouski
  4. Quebec-Ocean

Ask authors/readers for more resources

The transformations of chemical constituents in subterranean estuaries (STEs) control the delivery of nutrient loads from coastal aquifers to the ocean. It is important to determine the processes and sources that alter nutrient concentrations at a local scale in order to estimate accurate regional and global nutrient fluxes via submarine groundwater discharge (SGD), particularly in boreal environments, where data are still very scarce. Here, the biogeochemical transformations of nitrogen (N) species were examined within the STE of a boreal microtidal sandy beach located in the Magdalen Islands (Quebec, Canada). This study revealed the vertical and horizontal distribution of nitrate (NO3-), nitrite (NO2-), ammonia (NH4+), dissolved organic nitrogen (DON) and total dissolved nitrogen (TDN) measured in beach groundwater during four spring seasons (June 2011, 2012, 2013 and 2015) when aquifer recharge was maximal after snowmelt. Inland groundwater supplied high concentrations of NOx and DON to the STE, whereas inputs from seawater infiltration were very limited. Non-conservative behaviour was observed along the groundwater flow path, leading to low NOx and high NH4+ concentrations in the discharge zone. The long transit time of groundwater within the beach (similar to 166 days), coupled with oxygen-depleted conditions and high carbon concentrations, created a favourable environment for N transformations such as heterotrophic and autotrophic denitrification and ammonium production. Bio-geochemical pathways led to a shift in nitrogen species along the flow path from NOx-rich to NOx-poor groundwater. An estimate of SGD fluxes of N was determined to account for biogeochemical transformations within the STE based on a N-species inventory and Darcy's flow. Fresh inland groundwater delivered 37 mol NOx yr(-1) per metre of shoreline and 63 mol DON m(-1) yr(-1) to the STE, and NH4+ input was negligible. Near the discharge zone, the potential export of N species was estimated around 140, 1.5 and 33 mol yr(-1) per metre of shoreline for NH4+, NOx and DON respectively. In contrast to the fresh inland groundwater, the N load of beach groundwater near the discharge zone was dominated by NH4+ and DON. Our study shows the importance of tidal sands in the biogeochemical transformation of the terrestrial N pool. This local export of bioavailable N probably supports benthic production and higher trophic levels leading to its rapid transformation in surface sediments and coastal waters.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available