4.6 Article

Effect of zeolite confinement on the conversion of 1-butanol to butene isomers: mechanistic insights from DFT based microkinetic modelling

Journal

CATALYSIS SCIENCE & TECHNOLOGY
Volume 7, Issue 14, Pages 2978-2997

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c7cy00536a

Keywords

-

Funding

  1. Long Term Structural Methusalem by Flemish Government [BOF09/01M00409]
  2. Ghent University
  3. Flemish Supercomputer Center (VSC)
  4. Hercules Foundation
  5. Flemish Government - department EWI

Ask authors/readers for more resources

Ab initio based microkinetic modelling of 1-butanol dehydration to butene isomers is used to obtain mechanistic insights into the effect of a zeolite framework. A detailed microkinetic model including double bond isomerization, skeletal isomerization and mechanisms for the direct formation of 2t-butene from 1-butanol dimer and di-1-butyl ether (DBE) is considered for the dehydration in H-ZSM-5, H-ZSM-22 and H-FER. HFER favors the production of 2t-butene and H-ZSM-22 achieves thermodynamic equilibrium composition for linear butenes even at low conversion levels, while H-ZSM-5 maximizes 1-butene selectivity. Significant differences are observed in the reaction mechanism leading to formation of 2t-butene. For H-ZSM-5 and H-ZSM-22, the formation of 2-butenes occurs via double bond isomerization of 1-butene produced from butanol dehydration. For the double bond isomerization of 1-butene to 2t-butene, both concerted and 2-butoxide mediated stepwise mechanisms contribute significantly in H-ZSM-5, while only the concerted mechanism is operative in H-ZSM-22. On the other hand, for H-FER, 2t-butene is mainly produced from the butanol dimer via an E1 elimination accompanied by a 1,2-hydride shift. This in turn can be attributed to an increase in enthalpic stabilization of the E1 elimination transition state for the direct formation of 2t-butene from 1-butanol dimer when moving from H-ZSM-5 to H-FER. Isobutene formation is not observed in all three zeolites at the investigated temperature range of 450-500 K.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available