4.7 Article

Acute mixture toxicity of halogenated chemicals and their next generation counterparts on zebrafish embryos

Journal

CHEMOSPHERE
Volume 181, Issue -, Pages 710-712

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2017.04.146

Keywords

Fish; Embryos; Green chemistry

Funding

  1. National Science Foundation: Integrative Graduate Education and Research Traineeship [1144843]

Ask authors/readers for more resources

Perfluorinated chemicals and flame retardants are halogenated compounds commonly used in food packaging and in clothing and electronics, respectively. Due to the hazardous effects of many of these chemicals, manufacturers are developing next generation potential less toxic alternatives. The objective of this study was to assess the toxicity of potentially safer alternatives, singly and in mixtures, in relation to their first generation counterparts. We used zebrafish embryos as our model organism due to its high structural and functional homology to other vertebrates and its suitability for early developmental studies. We tested three well studied halogens, perfluorooctanoic acid (PFOA), tris (1,3-dichloro-2-propyl) phosphate (TDCPP) and tetrabromobisphenal A (TBBPA), and two less-studied next generation chemicals, 9,10-Dihydro-9-oxa-10-phosphaphenanthrene 10-oxide (DOPO) and perfluorobutyric acid (PFBA). First, we identified their lethal concentration (LC50) under 96 h exposures using zebrafish embryos; chemical LC50 values ranged from 1.3 to 13,795 ppm. Next, we tested the toxicity of tertiary mixtures containing the estimated LC50 values for each chemical which ranged from 126 to 5,094 ppm. We found that chemicals within these mixtures displayed concentration addition suggesting a similar mode of toxic action. Importantly, next generation chemicals were less acutely toxic singly and in mixtures than their first generation counterpart. (C) 2017 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available