4.8 Article

To Be or Not to Be? Five Guidelines to Avoid Misassignments in Cross-Linking/Mass Spectrometry

Journal

ANALYTICAL CHEMISTRY
Volume 89, Issue 15, Pages 7832-7835

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.analchem.7b02316

Keywords

-

Funding

  1. DFG [Si 867/15-2]
  2. state of Saxony Anhalt
  3. Alexander von Humboldt Foundation

Ask authors/readers for more resources

The number of publications in the field of chemical cross-linking/mass spectrometry (MS) for deriving protein 3D structures and for probing protein/protein interactions has largely increased during the last years. MS analysis of the large cross-linking datasets requires an automated data analysis by dedicated software tools, but applying scoring procedures with statistical methods does not eliminate the fundamental problems of a misassignment of cross-linked products. In fact, we have observed a significant rate of misassigned cross-links in a number of publications, mainly due to the presence of isobaric cross-linked species, an incomplete fragmentation of cross-linked products, and low-mass accuracy fragment ion data. These false assignments will eventually lead to wrong conclusions on the structural information derived from chemical cross-linking/MS experiments. In this contribution, we examine the most common sources for misassigning cross-linked products. We propose and discuss rational criteria and suggest five guidelines that might be followed for a reliable and unambiguous identification of cross-links, independently of the software used for data analysis. In the interest of the cross-linking/MS approach, it should be ensured that only high-quality data enter the structural biology literature. Clearly, there is an urgent need to define common standards for data analysis and reporting formats of cross-linked products

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available