4.6 Article

Effect of Methotrexate on an In Vitro Patient-Derived Model of Proliferative Vitreoretinopathy

Journal

INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE
Volume 58, Issue 10, Pages 3940-3949

Publisher

ASSOC RESEARCH VISION OPHTHALMOLOGY INC
DOI: 10.1167/iovs.16-20912

Keywords

PVR; proliferative vitreoretinopathy; retinal detachment; methotrexate; apoptosis

Categories

Funding

  1. National Institutes of Health [R00EY021624, K12EY16335, R21EY027061]
  2. E. Matilda Ziegler Foundation for the Blind
  3. Karl Kirchgessner Foundation research grant
  4. Department of Ophthalmology, Harvard Medical School
  5. National Institutes of Health P30 Center Core Grant [P30EY003790]
  6. Office of the Assistant Secretary of Defense for Health Affairs, through the Vision Research Program Technology/Therapeutic Development Award [W81XWH-17-2-0006]

Ask authors/readers for more resources

PURPOSE. The purpose of this study was to develop a method for isolating, culturing, and characterizing cells from patient-derived membranes in proliferative vitreoretinopathy (PVR) to be used for drug testing. METHODS. PVR membranes were obtained from six patients with grade C PVR. Membrane fragments were analyzed by gross evaluation, fixed for immunohistologic studies to establish cell identity, or digested with collagenase II to obtain single cell suspensions for culture. PVR-derived primary cultures were used to examine the effects of methotrexate (MTX) on proliferation, migration, and cell death. RESULTS. Gross analysis of PVR membranes showed presence of pigmented cells, indicative of retinal pigment epithelial cells. Immunohistochemistry identified cells expressing a-smooth muscle actin, glial fibrillary acidic protein, Bestrophin-1, and F4/80, suggesting the presence of multiple cell types in PVR. Robust PVR primary cultures (C-PVR) were successfully obtained from human membranes, and these cells retained the expression of cell identity markers in culture. C-PVR cultures formed membranes and band-like structures in culture reminiscent of the human condition. MTX significantly reduced the proliferation and band formation of C-PVR, whereas it had no significant effect on cell migration. MTX also induced regulated cell death within C-PVR as assessed by increased expression of caspase-3/7. CONCLUSIONS. PVR cells obtained from human membranes can be successfully isolated, cultured, and profiled in vitro. Using these primary cultures, we identified MTX as capable of significantly reducing growth and inducing cell death of PVR cells in vitro.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available