4.8 Article

Tuning Superhydrophobic Nanostructures To Enhance Jumping-Droplet Condensation

Journal

ACS NANO
Volume 11, Issue 8, Pages 8499-8510

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsnano.7b04481

Keywords

superhydrophobic; condensation; jumping droplets; coalescence; critical jumping size; optimizing nanostructure design

Funding

  1. Department of Biomedical Engineering and Mechanics at Virginia Tech

Ask authors/readers for more resources

It was recently discovered that condensation.growing on a nanostructured superhydrophobic surface can spontaneously jump off the surface, triggered by naturally occurring coalescence events. Many reports have observed that droplets must grow to a size of order 10 pm before jumping is enabled upon coalescence; however, it remains unknown how the critical jumping size relates to the topography of the underlying nanostructure. Here, we characterize the dynamic behavior of condensation growing on six different superhydrophobic nanostructures, where the topography of the nanopillars was systematically varied. The critical jumping diameter was observed to be highly dependent upon the height, diameter, and pitch of the nanopillars: tall and slender nanopillars promoted 2 itm jumping choplets, whereas short and stout nanopillars increased the critical size to over 20 mu m. The topology, of each surface is successfully correlated to the critical jumping diameter by constructing an energetic model that predicts how large a nucleating embryo needs to grow before it can inflate into the air with an apparent contact angle large enough for jumping. By extending our model to consider any possible surface, it is revealed that properly designed nanostructures should enable nanometric jumping droplets, which would further enhance jumping -droplet condensers for heat transfer, antifogging, and antifrosting applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available