4.4 Article Proceedings Paper

Aging, frailty and complex networks

Journal

BIOGERONTOLOGY
Volume 18, Issue 4, Pages 433-446

Publisher

SPRINGER
DOI: 10.1007/s10522-017-9684-x

Keywords

Aging; Frailty; Mortality; Frailty index; Complex networks; Mathematical modeling; Information theory; Frailty maximum

Funding

  1. Nova Scotia Health Authority research fund
  2. Natural Sciences and Engineering Research Council of Canada (NSERC) [RGPIN-2014-06245]
  3. CGSM fellowship
  4. Dalhousie Medical Research Foundation

Ask authors/readers for more resources

When people age their mortality rate increases exponentially, following Gompertz's law. Even so, individuals do not die from old age. Instead, they accumulate age-related illnesses and conditions and so become increasingly vulnerable to death from various external and internal stressors. As a measure of such vulnerability, frailty can be quantified using the frailty index (FI). Larger values of the FI are strongly associated with mortality and other adverse health outcomes. This association, and the insensitivity of the FI to the particular health variables that are included in its construction, makes it a powerful, convenient, and increasingly popular integrative health measure. Still, little is known about why the FI works so well. Our group has recently developed a theoretical network model of health deficits to better understand how changes in health are captured by the FI. In our model, health-related variables are represented by the nodes of a complex network. The network has a scale-free shape or topology'': a few nodes have many connections with other nodes, whereas most nodes have few connections. These nodes can be in two states, either damaged or undamaged. Transitions between damaged and non-damaged states are governed by the stochastic environment of individual nodes. Changes in the degree of damage of connected nodes change the local environment and make further damage more likely. Our model shows how age-dependent acceleration of the FI and of mortality emerges, even without specifying an age-damage relationship or any other time-dependent parameter. We have also used our model to assess how informative individual deficits are with respect to mortality. We find that the information is larger for nodes that are well connected than for nodes that are not. The model supports the idea that aging occurs as an emergent phenomenon, and not as a result of age-specific programming. Instead, aging reflects how damage propagates through a complex network of interconnected elements.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available