4.7 Article

Biodegradable Strain-Promoted Click Hydrogels for Encapsulation of Drug-Loaded Nanoparticles and Sustained Release of Therapeutics

Journal

BIOMACROMOLECULES
Volume 18, Issue 8, Pages 2277-2285

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.biomac.7b00377

Keywords

-

Funding

  1. IBM Almaden Research Center, USA
  2. Institute of Bioengineering and Nanotechnology (Biomedical Research Council), Singapore
  3. Institute of Bioengineering and Nanotechnology (Agency for Science, Technology and Research), Singapore

Ask authors/readers for more resources

Biodegradable polycarbonate-based ABA triblock copolymers were synthesized via organocatalyzed ring-opening polymerization and successfully formulated into chemically cross-linked hydrogels by strain-promoted alkyne-azide cycloaddition (SPAAC). The synthesis and cross-linking of these polymers are copper-free, thereby eliminating the concern over metallic contaminants for biomedical applications. Gelation occurs rapidly within a span of 60 s by simple mixing of the azide- and cyclooctyne-functionalized polymer solutions. The resultant hydrogels exhibited pronounced shear-thinning behavior and could be easily dispensed through a 22G hypodermic needle. To demonstrate the usefulness of these gels as a drug delivery matrix, doxorubicin (DOX)-loaded micelles prepared using catechol-functionalized polycarbonate copolymers were incorporated into the polymer solutions to eventually form micelle/hydrogel composites. Notably, the drug release rate from the hydrogels was significantly more gradual compared to the solution formulation. DOX release from the micelle/hydrogel composites could be sustained for 1 week, while the release from the micelle solution was completed rapidly within 6 h of incubation. Cellular uptake of the released DOX from the micelle/hydrogel composites was observed at 3 h of incubation of human breast cancer MDA-MB-231 cells. A blank hydrogel containing PEG-(Cat)(12) micelles showed almost negligible toxicity on MDA-MB-231cells where cell viability remained high at >80% after treatment. When the cells were treated with the DOX-loaded micelle/hydrogel composites, there was a drastic reduction in cell viability with only 25% of cells surviving the treatment. In all, this study introduces a simple method of formulating hydrogel materials with incorporated micelles for drug delivery applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available