4.3 Article

Naringenin prevents ischaemic stroke damage via anti-apoptotic and anti-oxidant effects

Journal

Publisher

WILEY
DOI: 10.1111/1440-1681.12775

Keywords

apoptosis; middle cerebral artery occlusion; naringenin; Nrf2; oxidative stress; oxygen and glucose deprivation/reperfusion

Funding

  1. Guangxi Scientific Research and Technological Development Projects [GKG1355005-4-3]
  2. Youth Fund Project of the Guangxi Natural Science Foundation [2013GXNSFBA019153]
  3. Guangxi Scientific and Technological Research Projects of Universities [KY2015ZD062]

Ask authors/readers for more resources

Apoptosis and oxidative stress are considered to be the major factors associated with the development and progression of many ischaemic cerebrovascular diseases. Naringenin (NAR) is an abundant flavanone in citrus plants and has been found to exhibit anti-oxidant, anti-carcinogenic and anti-apoptotic effects. This study aimed to investigate the anti-apoptotic and anti-oxidant effects of naringenin on ischaemic stroke. In vitro, cortical neuron cells isolated from the brains of neonatal Sprague-Dawley rats were randomly divided into control, oxygen and glucose deprivation/reperfusion (OGD/Rep), NAR-L, NAR-M and NAR-H groups. MTT and RT-PCR were used for cell proliferation and apoptosis-related proteins analyses. The effects of NAR on the Nrf2 signalling pathway were investigated using transfection approaches. Differences in mitochondrial dysfunction were analyzed by flow cytometry. In vivo, middle cerebral artery occlusion (MCAO) model was prepared and neurological defects and the brain wet/dry (W/D) ratio were assessed and recorded; apoptosis was measured based on the TUNEL assay. Additionally, biochemical indices were detected both in vitro and in vivo. NAR promoted cortical neuron cell proliferation, inhibited apoptosis and oxidative stress, and regulated the localization of Nrf2 protein (P<.05). Furthermore, silencing and overexpression of Nrf2 affected cortical neuron cell proliferation and apoptosis (P<.05). In vivo, NAR could alleviate cerebral oedema, improve neurological defects, and reduce apoptosis and oxidative stress (P<.05). These findings demonstrated that NAR could reduce apoptosis and oxidative stress and that Nrf2 signalling pathway is involved in this regulatory process. NAR has health-promoting properties because of its anti-apoptotic and anti-oxidant effects in cases of ischaemic stroke.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available