4.6 Article

Enhancing Person Re-identification in a Self-Trained Subspace

Publisher

ASSOC COMPUTING MACHINERY
DOI: 10.1145/3089249

Keywords

Person re-identification; self-training; semi-supervised learning

Funding

  1. National 973 Program of China [2014CB347600]
  2. National Nature Science Foundation of China [61432019]

Ask authors/readers for more resources

Despite the promising progress made in recent years, person re-identification (re-ID) remains a challenging task due to the complex variations in human appearances from different camera views. For this challenging problem, a large variety of algorithms have been developed in the fully supervised setting, requiring access to a large amount of labeled training data. However, the main bottleneck for fully supervised re-ID is the limited availability of labeled training samples. To address this problem, we propose a self-trained subspace learning paradigm for person re-ID that effectively utilizes both labeled and unlabeled data to learn a discriminative subspace where person images across disjoint camera views can be easily matched. The proposed approach first constructs pseudo-pairwise relationships among unlabeled persons using the k-nearest neighbors algorithm. Then, with the pseudo-pairwise relationships, the unlabeled samples can be easily combined with the labeled samples to learn a discriminative projection by solving an eigenvalue problem. In addition, we refine the pseudo-pairwise relationships iteratively, which further improves learning performance. A multi-kernel embedding strategy is also incorporated into the proposed approach to cope with the non-linearity in a person's appearance and explore the complementation of multiple kernels. In this way, the performance of person re-ID can be greatly enhanced when training data are insufficient. Experimental results on six widely used datasets demonstrate the effectiveness of our approach, and its performance can be comparable to the reported results of most state-of-the-art fully supervised methods while using much fewer labeled data.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available