4.7 Article

Aboveground net primary productivity and carbon balance remain stable under extreme precipitation events in a semiarid steppe ecosystem

Journal

AGRICULTURAL AND FOREST METEOROLOGY
Volume 240, Issue -, Pages 1-9

Publisher

ELSEVIER
DOI: 10.1016/j.agrformet.2017.03.006

Keywords

Climate change; Extreme large precipitation events; Grassland; Aboveground productivity; Ecosystem C exchange

Funding

  1. National Key Research and Development Program of China [2016YFC0501801]
  2. Chinese Academy of Sciences [KJRH2015-010]
  3. National Nonprofit Institute Research Grant of CAFINT [CAFYBB2014QB026]
  4. Special Funds for Science and Education Fusion of University of Chinese Academy of Sciences

Ask authors/readers for more resources

Global climate change is projected to increase both the intensity and frequency of extreme precipitation events (EPEs), which are considered to have stronger impacts on ecosystem functions than gradual changes in mean precipitation conditions. In this study, a consecutive 20-day extreme precipitation event (282 mm) was applied during the mid- and late-growing season periods in a semiarid steppe for three years to investigate the effects of extreme large precipitation events on aboveground net primary productivity (ANPP) and ecosystem carbon dioxide (CO2) fluxes, including net ecosystem carbon absorption (NEE), gross primary productivity (GPP) and ecosystem respiration (Re). Although soil moisture was significantly increased by extreme precipitation, and even exceeded field capacity during the treatment periods, ANPP remained stable across all the treatments. There was also little change in mean growing season ecosystem CO2 fluxes under the two precipitation treatments, despite GPP rates decreased by 34.4 and 26.3%, and NEE rates were suppressed by 77 and 68% during the mid- and late-season treatment periods, respectively. The stable CO2 fluxes could be attributed to the recovery of GPP and NEE in 7 and 12 days after the end of EPEs. Our study demonstrated that both ANPP and CO2 fluxes in this semiarid steppe were very stable in the face of extreme large precipitation events, regardless of the timing of events occur. Nevertheless, future, long-term studies need to investigate the potential tipping points or thresholds for ecosystem function shifts, as an increasing occurrence of EPEs has been forecasted in future climate change scenarios. (C) 2017 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available