4.3 Article

Successional changes of epibiont fouling communities of the cultivated kelp Alaria esculenta: predictability and influences

Journal

AQUACULTURE ENVIRONMENT INTERACTIONS
Volume 9, Issue -, Pages 57-71

Publisher

INTER-RESEARCH
DOI: 10.3354/aei00215

Keywords

Alaria esculenta; Macroalgae; Aquaculture; Frond; Fouling; Epibiont; Predictability; Influences

Funding

  1. Energetic Algae project (EU Interreg IVB NWE Strategic Initiative)
  2. Dr. Tony Ryan Research Trust, NUI Galway

Ask authors/readers for more resources

There has been an increase in commercial-scale kelp cultivation in Europe, with fouling of cultivated kelp fronds presenting a major challenge to the growth and development of the industry. The presence of epibionts decreases productivity and impacts the commercial value of the crop. Several abiotic and biotic factors may influence the occurrence and degree of fouling of wild and cultivated fronds. Using a commercial kelp farm on the SW coast of Ireland, we studied the development of fouling communities on cultivated Alaria esculenta fronds over 2 typical growing seasons. The predictability of community development was assessed by comparing mean occurrence-day. Hypotheses that depth, kelp biomass, position within the farm and the hydrodynamic environment affect the fouling communities were tested using species richness and community composition. Artificial kelp mimics were used to test whether local frond density could affect the fouling communities. Species richness increased over time during both years, and species composition was consistent over years with early successional communities converging into later communities (no significant differences between June 2014 and June 2015 communities, ANOSIM; R = -0.184, p > 0.05). The timing of species occurrences was predictable across years for all shared species. Variations in biomass, depth and position within the farm had no significant effect on species richness and composition. Results from artificial kelp mimics suggest possible hydrodynamic effects. The ability to understand succession and the timing of occurrences of fouling organisms and predict their arrival has significant benefits for the seaweed cultivation industry.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available