4.8 Article

Large In-Plane and Vertical Piezoelectricity in Janus Transition Metal Dichalchogenides

Journal

ACS NANO
Volume 11, Issue 8, Pages 8242-8248

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsnano.7b03313

Keywords

piezoelectricity; 2D materials; Janus transition metal dichacogenides; monolayers; multilayers

Funding

  1. Army Research Office [W911NF-16-1-0447]
  2. National Science Foundation [ACI-1053575]

Ask authors/readers for more resources

Piezoelectricity in 2D van der Waals materials has received considerable interest because of potential applications in nanoscale energy harvesting, sensors, and actuators. However, in all the systems studied to date, strain and electric polarization are confined to the basal plane, limiting the operation of piezoelectric devices. In this paper, based on ab initio calculations, we report a 2D materials system, namely, the recently synthesized Janus MXY (M = Mo or W, X/Y = S, Se, or Te) monolayer and multilayer structures, with large out-of-plane piezoelectric polarization. For MXY monolayers, both strong in-plane and much weaker out-of-plane piezoelectric polarizations can be induced by a uniaxial strain in the basal plane. For multilayer MXY, we obtain a very strong out-of-plane piezoelectric polarization when strained transverse to the basal plane, regardless of the stacking sequence. The out-of-plane piezoelectric coefficient d33 is found to be strongest in multilayer MoSTe (5.7-13.5 pm/V depending on the stacking sequence), which is larger than that of the commonly used 3D piezoelectric material AIN (d(33) = 5.6 pm/V); d(33) in other multilayer MXY structures are a bit smaller, but still comparable. Our study reveals the potential for utilizing piezoelectric 2D materials and their van der Waals multilayers in device applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available