4.8 Article

Fabrication of continuous carbon, glass and Kevlar fibre reinforced polymer composites using additive manufacturing

Journal

ADDITIVE MANUFACTURING
Volume 16, Issue -, Pages 146-152

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.addma.2017.06.004

Keywords

Carbon fibre; Glass fibre; Kevlar fibre; Additive manufacturing; Continuous fibres

Ask authors/readers for more resources

This study evaluates the performance of continuous carbon, Kevlar and glass fibre reinforced composites manufactured using the fused deposition modelling (FDM) additive manufacturing technique. The fibre reinforced nylon composites were fabricated using a Markforged Mark One 3D printing system. The mechanical performance of the composites was evaluated both in tension and flexure. The influence of fibre orientation, fibre type and volume fraction on mechanical properties were also investigated. The results were compared with that of both non-reinforced nylon control specimens, and known material property values from literature. It was demonstrated that of the fibres investigated, those fabricated using carbon fibre yielded the largest increase in mechanical strength per fibre volume. Its tensile strength values were up to 6.3 times higher than those obtained with the non-reinforced nylon polymer. As the carbon and glass fibre volume fraction increased so too did the level of air inclusion in the composite matrix, which impacted on mechanical performance. As a result, a maximum efficiency in tensile strength was observed in glass specimen as fibre content approached 22.5%, with higher fibre contents (up to 33%), yielding only minor increases in strength. (C) 2017 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available