4.7 Article

A data processing methodology for infrared thermography images of concrete bridges

Journal

COMPUTERS & STRUCTURES
Volume 190, Issue -, Pages 205-218

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.compstruc.2017.05.011

Keywords

Infrared thermography; Non-destructive evaluation; Bridge deck inspection; IRT data processing; Finite element modeling

Funding

  1. West Nippon Expressway Company Limited (NEXCO-West)
  2. Scientific and Technological Research Council of Turkey (TOBiTAK)
  3. National Science Foundation (NSF CMMI) [1463493]

Ask authors/readers for more resources

This study presents a methodology to improve the usability and efficiency of infrared thermography (IRT) for subsurface damage detection in concrete structures. A practical and more objective approach to obtain a threshold for IRT data processing was developed by incorporating finite element (FE) model simulations. Regarding the temperature thresholds of sound and delaminated areas, the temperature of the sound part was obtained from the IR image, and the temperature of the delaminated area was defined by FE model simulation. With this methodology, delaminated areas of concrete slabs at 1.27 cm and 2.54 cm depths could be detected more objectively than by visually judging the color contrast of IR images. However, it was also found that the boundary condition affects the accuracy of the method, and the effect varies depending on the data collection time. On the other hand, it can be assumed that the influential area of the boundary condition is much smaller than the area of a bridge deck in real structures; thus, it might be ignorable on real concrete bridge decks. Even though there are some limitations, this methodology performed successfully paving the way towards automated IRT data analysis for concrete bridge deck inspections. (C) 2017 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available