4.8 Article

Dimensional Engineering of a Graded 3D-2D Halide Perovskite Interface Enables Ultrahigh Voc Enhanced Stability in the p-i-n Photovoltaics

Journal

ADVANCED ENERGY MATERIALS
Volume 7, Issue 20, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/aenm.201701038

Keywords

blocking ion migration; dimensional engineering; energy level alignment; enhanced stability; reduced interfacial charge recombination

Funding

  1. HK-RGC General Research Funds [16312216, 16300915]
  2. HK Innovation and Technology Fund [ITS/004/14]

Ask authors/readers for more resources

2D halide perovskite materials have shown great advantages in terms of stability when applied in a photovoltaic device. However, the impediment of charge transport within the layered structure drags down the device performance. Here for the first time, a 3D-2D (MAPbI(3)-PEA(2)Pb(2)I(4)) graded perovskite interface is demonstrated with synergistic advantages. In addition to the significantly improved ambient stability, this graded combination modifies the interface energy level in such a way that reduces interface charge recombination, leading to an ultrahigh V-oc at 1.17 V, a record for NiO-based p-i-n photovoltaic devices. Moreover, benefiting from the graded structure induced continuously upshifts energy level, the photovoltaic device attains a high Jsc of 21.80 mA cm(-2) and a high fill factor of 0.78, resulting in an overall power conversion efficiency (PCE) of 19.89%. More importantly, it is showed that such a graded interface structure also suppresses ion migration in the device, accounting for its significantly enhanced thermal stability.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available