4.8 Article

Unveiling the Dynamic Processes in Hybrid Lead Bromide Perovskite Nanoparticle Thin Film Devices

Journal

ADVANCED ENERGY MATERIALS
Volume 7, Issue 15, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/aenm.201602283

Keywords

-

Funding

  1. German Federal Ministry of Education and Research (BMBF) [01162525/1]
  2. Bavarian Ministry of the Environment and Consumer Protection
  3. Engineering of Advanced Materials (EAM)
  4. DFG Excellence Cluster Nanosystems Initiative Munich (NIM)
  5. Fonds der Chemischen Industrie (FCI) in the Liebig grant framework
  6. European Union

Ask authors/readers for more resources

Hybrid and all-inorganic perovskite (PK) materials are a promising next generation of semiconducting materials due to their outstanding light-harvesting features, as well as their color-tunablility and efficient luminescent properties that lead to highly efficient photovoltaic and lighting devices. Bulk PK films are both ionic and electronic conductors under the presence of an externally applied electric field. In this work, the internal ion motion behavior is demonstrated within PK nanoparticles in thin-film devices by means of different long-time poling scheme assays and both static and dynamic electrochemical impedance spectroscopy measurements. In particular, the existence of a dynamic device behavior is related to the migration and rearrangement of different ionic species upon applying different driving schemes. The latter resembles the well-known signatures of the ionic motion in light-emitting electrochemical cells (LECs), that is, (i) the formation of electrical double layers due to the ionic distribution at the electrodes' interfaces, (ii) the growth of the doped regions once the charge injection is effective, and (iii) the subsequent formation of a non-doped region in the bulk of the device. Hence, this comprehensive study opens up an alternative route toward understanding the dynamics inside hybrid perovskite materials based on the large body of knowledge of LECs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available