4.8 Article

Flexible and Stretchable Biobatteries: Monolithic Integration of Membrane-Free Microbial Fuel Cells in a Single Textile Layer

Journal

ADVANCED ENERGY MATERIALS
Volume 8, Issue 7, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/aenm.201702261

Keywords

bioelectricity; conductive and hydrophilic textile coating; flexible and stretchable biofuel cells; solid-state cathode; textile-based microbial fuel cells

Funding

  1. NSF (ECCS) [1503462]
  2. Binghamton University Research Foundation (Smart Energy TAE)
  3. Div Of Electrical, Commun & Cyber Sys
  4. Directorate For Engineering [1503462] Funding Source: National Science Foundation

Ask authors/readers for more resources

The fabrication and performance of a flexible and stretchable microbial fuel cell (MFC) monolithically integrated into a single sheet of textile substrate are reported. The single-layer textile MFC uses Pseudomonas aeruginosa (PAO1) as a biocatalyst to produce a maximum power of 6.4 mu W cm(-2) and current density of 52 mu A cm(-2), which are substantially higher than previous textile-MFCs and are similar to other flexible paper-based MFCs. The textile MFC demonstrates a stable performance with repeated stretching and twisting cycles. The membrane-less single-chamber configuration drastically simplifies the fabrication and improves the performance of the MFC. A conductive and hydrophilic anode in a 3D fabric microchamber maximizes bacterial electricity generation from a liquid environment and a silver oxide/silver solid-state cathode reduces cathodic overpotential for fast catalytic reaction. A simple batch fabrication approach simultaneously constructs 35 individual devices, which will revolutionize the mass production of textile MFCs. This stretchable and twistable power device printed directly onto a single textile substrate can establish a standardized platform for textile-based biobatteries and will be potentially integrated into wearable electronics in the future.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available