4.8 Article

High-Performance and Uniform 1 cm(2) Polymer Solar Cells with D-1-A-D-2-A-Type Random Terpolymers

Journal

ADVANCED ENERGY MATERIALS
Volume 8, Issue 7, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/aenm.201701405

Keywords

active area; copolymers; morphology; organic photovoltaics; power conversion efficiency

Funding

  1. Global Frontier R&D Program on Center for Multiscale Energy System [NRF-2016M3A6A7945505]
  2. National Research Foundation under the Ministry of Science, ICT & Future Planning, Korea [2012M3A7B4049989]
  3. KIST institutional programs
  4. Korea Institute of Energy Technology Evaluation and Planning (KETEP) - Ministry of Knowledge Economy (MKE) [20163030013620]

Ask authors/readers for more resources

For the commercial development of organic photovoltaics (OPVs), laboratory-scale OPV technology must be translated to large area modules. In particular, it is important to develop high-efficiency polymers that can form thick (>100 nm) bulk heterojunction (BHJ) films over large areas with optimal morphologies for charge generation and transport. Here, D-1-A-D-2-A random terpolymers composed of 2,2'-bithiophene with various proportions of 5,6-difluoro-4,7-bis(thiophen-2-yl)-2,1,3-benzothiadiazole and 5,6-difluoro-2,1,3-benzothiadiazole (FBT) are synthesized. It is found that incorporating small proportions of FBT into the polymer not only conserves the high crystallinity and favorable face-on orientation of the D-A copolymer FBT-Th4 but also improves the nanoscale phase separation of the BHJ film. Consequently, the random terpolymer PDT2fBT-BT10 exhibits a much improved solar cell efficiency of 10.31% when compared to that of the copolymer FBT-Th4 (8.62%). Moreover, due to this polymer's excellent processability and suppressed overaggregation, OPVs with 1 cm(2) active area based on 351 nm thick PDT2fBT-BT10 BHJs exhibit high photovoltaic performance of 9.42%, whereas rapid efficiency decreases arise for FBT-Th4-based OPVs for film thicknesses above 300 nm. It is demonstrated that this random terpolymer can be used in large area and thick BHJ OPVs, and guidelines for developing polymers that are suitable for large-scale printing technologies are presented.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available