4.8 Article

3D-Printed Conical Arrays of TiO2 Electrodes for Enhanced Photoelectrochemical Water Splitting

Journal

ADVANCED ENERGY MATERIALS
Volume 7, Issue 21, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/aenm.201701060

Keywords

3D printing; array electrodes; photoelectrochemistry; TiO2; water splitting

Funding

  1. University of Wollongong's Vice Chancellor Research Fellowship
  2. Australian Research Council Centre of Excellence Scheme [CE 140100012]

Ask authors/readers for more resources

Control over the topography of semiconducting materials can lead to enhanced performances in photoelectrochemical related applications. One means of implementing this is through direct patterning of metal-based substrates, though this is inadequately developed. Conventional techniques for patterned fabrication commonly involve technologically demanding and tedious processes. 3D printing, a form of additive fabrication, enables creation of a 3D object by deposition of successive layers of material via computer control. In this work, the feasibility of fabricating metal-based 3D printed photoelectrodes is explored. Electrodes comprised of conical arrays are fabricated and the performance for photoelectrochemical water splitting is further enhanced by the direct growth of TiO2 nanotubes on this platform. 3D metal printing provides a flexible and versatile approach for the design and fabrication of novel electrode structures.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available