4.8 Article

Effect of Enhanced Accessibility of Acid Sites in Micromesoporous Mordenite Zeolites on Hydroisomerization of n-Hexane

Journal

ACS CATALYSIS
Volume 7, Issue 9, Pages 5781-5795

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acscatal.7b01696

Keywords

isomerization; n-hexane; micromesoporous mordenite (MOR) zeolites; hierarchical structure; desilication

Funding

  1. Grant Agency of the Czech Republic [GA15-12113S]
  2. Ministry of Education, Youth and Sports of the Czech Republic [LM2015073, CZ.02.1.01/0.0/0.0/16_013/0001821]

Ask authors/readers for more resources

This paper describes a study of the nature and the accessibility of the acid sites in micromesoporous mordenite zeolites obtained by desilication and dealumination and analysis of their activity and selectivity in the hydroisomerization of n-hexane. Alkaline-acid, acid-alkaline-acid, and fluorination-alkaline-acid postsynthesis treatments were employed for the preparation of micromesoporous mordenites. The FTIR spectra of adsorbed d(3)-acetonitrille, Al-27 MAS NMR, HR-TEM, and N-2 adsorption were used for quantitative analysis of the Bronsted and Lewis sites, the coordination of Al atoms, and the textural properties. The alkaline treatment causes desilication, preferably occurring along the crystal defects and resulting in the formation of a secondary mesoporous structure characterized by 5-20 nm cavities and the formation of extraframework (Al-Ex) species and terminal Si-OH groups. The Al-Ex species formed by hydrolysis of perturbed or dislodged framework Al easily restrict part of the pseudomonodimensional channel structure of mordenite. The subsequent removal of Al-Ex by mild acid leaching or simultaneous removal of Si and Al atoms by desilication of fluorinated zeolite result in a micromesoporous structure with a large number of unrestricted channel openings and lead to a large increase in the accessibility of 01-1 groups for n-hexane. Thus, the sequential leaching treatments enable the formation of active acid sites in an environment of nonrestricted microporous channels with simultaneous enhancement of accessibility of the active sites and molecular transport. It is shown that the micromesoporous structure with high concentration of Bronsted sites of enhanced accessibility directs the hydroisomerization reaction toward high yields of branched isomers and shortening of the main 12-ring channels and that the larger numbers of channel openings result in an increase in selectivity, limiting nonselective subsequent cracking reactions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available