4.2 Review

Sarcopenia in Alcoholic Liver Disease: Clinical and Molecular Advances

Journal

ALCOHOLISM-CLINICAL AND EXPERIMENTAL RESEARCH
Volume 41, Issue 8, Pages 1419-1431

Publisher

WILEY
DOI: 10.1111/acer.13425

Keywords

Sarcopenia; Anabolic Resistance; Alcoholic Liver Disease; Cirrhosis; Proteostasis

Funding

  1. National Institutes of Health [R 21 AA022742, P50 AA 024333 8236, GM119174, DK 83414, UO1 DK 061732, UO1 AA021893, P50 AA024333 8232]

Ask authors/readers for more resources

Despite advances in treatment of alcohol use disorders that focus on increasing abstinence and reducing recidivism, alcoholic liver disease (ALD) is projected to be the major cause of cirrhosis and its complications. Malnutrition is recognized as the most frequent complication in ALD, and despite the high clinical significance, there are no effective therapies to reverse malnutrition in ALD. Malnutrition is a relatively imprecise term, and sarcopenia or skeletal muscle loss, the major component of malnutrition, is primarily responsible for the adverse clinical consequences in patients with liver disease. It is, therefore, critical to define the specific abnormality (sarcopenia) rather than malnutrition in ALD, so that therapies targeting sarcopenia can be developed. Skeletal muscle mass is maintained by a balance between protein synthesis and proteolysis. Both direct effects of ethanol (EtOH) and its metabolites on the skeletal muscle and the consequences of liver disease result in disturbed proteostasis (protein homeostasis) and consequent sarcopenia. Once cirrhosis develops in patients with ALD, abstinence is unlikely to be effective in completely reversing sarcopenia, as other contributors including hyperammonemia, hormonal, and cytokine abnormalities aggravate sarcopenia and maintain a state of anabolic resistance initiated by EtOH. Cirrhosis is also a state of accelerated starvation, with increased gluconeogenesis that requires amino acid diversion from signaling and substrate functions. Novel therapeutic options are being recognized that are likely to supplant the current deficiency replacement approach and instead focus on specific molecular perturbations, given the increasing availability of small molecules that can target specific signaling components. Myostatin antagonists, leucine supplementation, and mitochondrial protective agents are currently in various stages of evaluation in preclinical studies to prevent and reverse sarcopenia, in cirrhosis in general, and ALD, specifically. Translation of these data to human studies and clinical application requires priority for allocation of resources.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available