4.8 Article

Standardized Benchmarking of Water Splitting Catalysts in a Combined Electrochemical Flow Cell/Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES) Setup

Journal

ACS CATALYSIS
Volume 7, Issue 6, Pages 3768-3778

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acscatal.7b00632

Keywords

oxygen evolution; electrochemical flow cell; ICP-OES; catalyst benchmarking; electrochemistry; faradaic efficiency

Funding

  1. MAXNET Energy Consortium of Max Planck Society

Ask authors/readers for more resources

The oxygen evolution reaction (OER) is the limiting step in splitting water into its constituents, hydrogen and oxygen. Hence, research on potential OER catalysts has become the focus of many studies. In this work, we investigate capable OER catalysts but focus on catalyst stability, which is, especially in this case, at least equally as important as catalyst activity. We propose a specialized setup for monitoring the corrosion profiles of metal oxide catalysts during a stability testing protocol, which is specifically designed to standardize the investigation of OER catalysts by means of differentiating between catalyst corrosion and deactivation, oxygen evolution efficiency, and catalyst activity. For this purpose, we combined an electrochemical flow cell (EFC) with an oxygen sensor and an inductively coupled plasma optical emission spectrometry (ICP-OES) system for the simultaneous investigation of catalyst deactivation, activity, and faradaic efficiency of catalysts. We tested various catalysts, with IrO2 and NiCoPO2 used as benchmark materials in acidic and alkaline environment, respectively. The scalability of our setup will allow the user to investigate catalytic materials with supports of higher surface area than those which are typical for microelectrochemical flow cells (thus, under conditions more similar to those of commercial electrolyzers).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available