4.7 Article

Analytical buckling model for slender FRP-reinforced concrete columns

Journal

COMPOSITE STRUCTURES
Volume 176, Issue -, Pages 33-42

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.compstruct.2017.05.034

Keywords

Axial load; Buckling model; Concrete column; Fiber reinforced polymer; Slenderness ratio; Spiral

Funding

  1. University of Utah

Ask authors/readers for more resources

Research is limited with respect to load-deflection behavior of slender concrete columns internally reinforced with Fiber Reinforced Polymer (FRP) spirals and longitudinal bars. An analytical buckling model based on numerical integration is presented to predict the load versus deflection performance of slender concrete columns reinforced with FRP spirals and longitudinal bars, subjected to eccentric loads. The model can be used to predict the behavior of slender concrete columns with various configurations including FRP and/or steel reinforcement, single or double spiral, and number of longitudinal bars. The longitudinal bars considered include steel, FRP, or hybrid reinforcement consisting of steel and FRP bars. The model is found to predict the experimental performance of slender concrete columns reinforced with Glass FRP longitudinal bars and spirals with satisfactory accuracy. The model is used to create interaction diagrams for FRP spiral-confined circular concrete columns with various slenderness ratios, reinforced with steel, FRP or hybrid reinforcement. (C) 2017 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available