4.8 Article

Identification of catalytic sites in cobalt-nitrogen-carbon materials for the oxygen reduction reaction

Journal

NATURE COMMUNICATIONS
Volume 8, Issue -, Pages -

Publisher

NATURE RESEARCH
DOI: 10.1038/s41467-017-01100-7

Keywords

-

Funding

  1. ANR [CHEX 004 01]
  2. Project 'PEMFC-SUDOE' - European Regional Development Fund [SOE1/P1/E0293]

Ask authors/readers for more resources

Single-atom catalysts with full utilization of metal centers can bridge the gap between molecular and solid-state catalysis. Metal-nitrogen-carbon materials prepared via pyrolysis are promising single-atom catalysts but often also comprise metallic particles. Here, we pyrolytically synthesize a Co-N-C material only comprising atomically dispersed cobalt ions and identify with X-ray absorption spectroscopy, magnetic susceptibility measurements and density functional theory the structure and electronic state of three porphyrinic moieties, CoN4C12, CoN3C10,(porp) and CoN2C5. The O-2 electro-reduction and operando X-ray absorption response are measured in acidic medium on Co-N-C and compared to those of a Fe-N-C catalyst prepared similarly. We show that cobalt moieties are unmodified from 0.0 to 1.0 V versus a reversible hydrogen electrode, while Fe-based moieties experience structural and electronic-state changes. On the basis of density functional theory analysis and established relationships between redox potential and O-2-adsorption strength, we conclude that cobaltbased moieties bind O-2 too weakly for efficient O-2 reduction.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available