4.6 Article

Highly efficient and simultaneously catalytic removal of PM and NOx from diesel engines with 3DOM Ce0.8M0.1Zr0.1O2 (M = Mn, Co, Ni)

Journal

CHEMICAL ENGINEERING SCIENCE
Volume 167, Issue -, Pages 219-228

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ces.2017.04.023

Keywords

Soot particulates; Three ordered macroporous structure catalysts; Simultaneous removal; NOx

Funding

  1. National Natural Science Foundation of China [U1662103, 21673290, 21376261]
  2. 863 Program [2015AA034603]

Ask authors/readers for more resources

A novel catalytic purification process over a 3DOM catalyst, called SCRPF (Selective Catalytic Reduction and Particulate Filter), was designed and employed for the simultaneous removal of PM (particulates matter) and NOx from diesel engine exhausts. This process combines the advantages of the DPF and SCR of NOx reduction processes. The catalytic purification process occurring over a SCRPF reactor is cost-efficient. The contact between solid PM and the catalyst active site has been intensified by the unique 3DOM structure. 3DOM Ce0.8Mn0.1Zr0.1O2 catalyst provided the maximum concentration of CO2 at 402 degrees C for PM combustion and showed excellent NH3-SCR performance in the 374-512 degrees C temperature range. The specific 3DOM architecture, high Ce3+/Ce4+ ratio and amount of chemisorbed oxygen species, good low-temperature reducibility as well as the abundant of acid sites are responsible for the excellent catalytic efficiency of Ce0.8Mn0.1Zr0.1O2 sample used for the simultaneous removal of PM and NOx from diesel engines. The use of an inexpensive catalyst may make the practical application of this process more advantageous. (C) 2017 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available