4.8 Article

Nonreciprocal reconfigurable microwave optomechanical circuit

Journal

NATURE COMMUNICATIONS
Volume 8, Issue -, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/s41467-017-00447-1

Keywords

-

Funding

  1. SNF
  2. NCCR Quantum Science and Technology (QSIT)
  3. EU Horizon research and innovation programme [732894]
  4. UK Engineering and Physical Sciences Research Council (EPSRC) [EP/M506485/1]
  5. ERC AdG (QuREM)
  6. Royal Society
  7. Winton Programme for the Physics of Sustainability
  8. Department of Science and Technology, India
  9. Engineering and Physical Sciences Research Council [1642448] Funding Source: researchfish

Ask authors/readers for more resources

Nonreciprocal microwave devices are ubiquitous in radar and radio communication and indispensable in the readout chains of superconducting quantum circuits. Since they commonly rely on ferrite materials requiring large magnetic fields that make them bulky and lossy, there has been significant interest in magnetic-field-free on-chip alternatives, such as those recently implemented using the Josephson nonlinearity. Here, we realize reconfigurable nonreciprocal transmission between two microwave modes using purely optomechanical interactions in a superconducting electromechanical circuit. The scheme relies on the interference in two mechanical modes that mediate coupling between the microwave cavities and requires no magnetic field. We analyse the isolation, transmission and the noise properties of this nonreciprocal circuit. Finally, we show how quantum-limited circulators can be realized with the same principle. All-optomechanically mediated nonreciprocity demonstrated here can also be extended to directional amplifiers, and it forms the basis towards realizing topological states of light and sound.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available