4.8 Article

Environmentally stable interface of layered oxide cathodes for sodium-ion batteries

Related references

Note: Only part of the references are listed.
Review Chemistry, Multidisciplinary

Na-Ion Battery Anodes: Materials and Electrochemistry

Wei Luo et al.

ACCOUNTS OF CHEMICAL RESEARCH (2016)

Article Chemistry, Multidisciplinary

Sodium and Manganese Stoichiometry of P2-Type Na2/3MnO2

Shinichi Kumakura et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2016)

Review Chemistry, Multidisciplinary

Recent advances in titanium-based electrode materials for stationary sodium-ion batteries

Shaohua Guo et al.

ENERGY & ENVIRONMENTAL SCIENCE (2016)

Review Chemistry, Physical

Recent Progress in Electrode Materials for Sodium-Ion Batteries

Hyungsub Kim et al.

ADVANCED ENERGY MATERIALS (2016)

Review Chemistry, Multidisciplinary

Recent Advances and Prospects of Cathode Materials for Sodium-Ion Batteries

Xingde Xiang et al.

ADVANCED MATERIALS (2015)

Article Chemistry, Multidisciplinary

Prototype Sodium-Ion Batteries Using an Air-Stable and Co/Ni-Free O3-Layered Metal Oxide Cathode

Linqin Mu et al.

ADVANCED MATERIALS (2015)

Article Chemistry, Multidisciplinary

A Layered P2-and O3-Type Composite as a High-Energy Cathode for Rechargeable Sodium-Ion Batteries

Shaohua Guo et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2015)

Review Chemistry, Multidisciplinary

The Emerging Chemistry of Sodium Ion Batteries for Electrochemical Energy Storage

Dipan Kundu et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2015)

Article Chemistry, Physical

Critical Role of Crystal Water for a Layered Cathode Material in Sodium Ion Batteries

Kwan Woo Nam et al.

CHEMISTRY OF MATERIALS (2015)

Article Chemistry, Physical

Uptake of CO2 in Layered P2-Na0.67Mn0.5Fe0.5O2: Insertion of Carbonate Anions

Victor Duffort et al.

CHEMISTRY OF MATERIALS (2015)

Article Chemistry, Multidisciplinary

High-performance symmetric sodium-ion batteries using a new, bipolar O3-type material, Na0.8Ni0.4Ti0.6O2

Shaohua Guo et al.

ENERGY & ENVIRONMENTAL SCIENCE (2015)

Review Chemistry, Multidisciplinary

A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries

Man Huon Han et al.

ENERGY & ENVIRONMENTAL SCIENCE (2015)

Review Electrochemistry

Review-Manganese-Based P2-Type Transition Metal Oxides as Sodium-Ion Battery Cathode Materials

Raphaele J. Clement et al.

JOURNAL OF THE ELECTROCHEMICAL SOCIETY (2015)

Article Chemistry, Multidisciplinary

Mesoporous Prussian Blue Analogues: Template-Free Synthesis and Sodium-Ion Battery Applications

Yanfeng Yue et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2014)

Article Chemistry, Multidisciplinary

P2-type Na2/3Ni1/3Mn2/3-xTixO2 as a new positive electrode for higher energy Na-ion batteries

Hiroaki Yoshida et al.

CHEMICAL COMMUNICATIONS (2014)

Review Chemistry, Multidisciplinary

Research Development on Sodium-Ion Batteries

Naoaki Yabuuchi et al.

CHEMICAL REVIEWS (2014)

Article Chemistry, Multidisciplinary

Na0.67Mn1-xMgxO2 (0 ≤ x ≤ 0.2): a high capacity cathode for sodium-ion batteries

Juliette Billaud et al.

ENERGY & ENVIRONMENTAL SCIENCE (2014)

Article Chemistry, Multidisciplinary

β-NaMnO2: A High-Performance Cathode for Sodium-Ion Batteries

Juliette Billaud et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2014)

Review Materials Science, Multidisciplinary

Recent research progress on iron- and manganese-based positive electrode materials for rechargeable sodium batteries

Naoaki Yabuuchi et al.

SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS (2014)

Article Multidisciplinary Sciences

A 3.8-V earth-abundant sodium battery electrode

Prabeer Barpanda et al.

NATURE COMMUNICATIONS (2014)

Article Chemistry, Physical

Na[Ni0.4Fe0.2Mn0.4-xTix]O2: a cathode of high capacity and superior cyclability for Na-ion batteries

Xin Sun et al.

JOURNAL OF MATERIALS CHEMISTRY A (2014)

Article Chemistry, Multidisciplinary

Nanoarchitecture Multi-Structural Cathode Materials for High Capacity Lithium Batteries

Dapeng Wang et al.

ADVANCED FUNCTIONAL MATERIALS (2013)

Article Chemistry, Multidisciplinary

Sodium-Ion Batteries

Michael D. Slater et al.

ADVANCED FUNCTIONAL MATERIALS (2013)

Article Chemistry, Multidisciplinary

Binding SnO2 Nanocrystals in Nitrogen-Doped Graphene Sheets as Anode Materials for Lithium-Ion Batteries

Xiaosi Zhou et al.

ADVANCED MATERIALS (2013)

Review Chemistry, Multidisciplinary

Room-temperature stationary sodium-ion batteries for large-scale electric energy storage

Huilin Pan et al.

ENERGY & ENVIRONMENTAL SCIENCE (2013)

Article Materials Science, Multidisciplinary

RECENT ADVANCES IN SODIUM INTERCALATION POSITIVE ELECTRODE MATERIALS FOR SODIUM ION BATTERIES

Jing Xu et al.

FUNCTIONAL MATERIALS LETTERS (2013)

Article Chemistry, Physical

An advanced cathode for Na-ion batteries with high rate and excellent structural stability

Dae Hoe Lee et al.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2013)

Review Chemistry, Multidisciplinary

Ti-based compounds as anode materials for Li-ion batteries

Guan-Nan Zhu et al.

ENERGY & ENVIRONMENTAL SCIENCE (2012)

Article Chemistry, Multidisciplinary

Na-ion batteries, recent advances and present challenges to become low cost energy storage systems

Veronica Palomares et al.

ENERGY & ENVIRONMENTAL SCIENCE (2012)

Article Chemistry, Inorganic & Nuclear

Study on the Reversible Electrode Reaction of Na1-xNi0.5Mn0.5O2 for a Rechargeable Sodium-Ion Battery

Shinichi Komaba et al.

INORGANIC CHEMISTRY (2012)

Article Chemistry, Physical

P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries

Naoaki Yabuuchi et al.

NATURE MATERIALS (2012)

Article Electrochemistry

Electrochemical Properties of Monoclinic NaMnO2

Xiaohua Ma et al.

JOURNAL OF THE ELECTROCHEMICAL SOCIETY (2011)

Article Chemistry, Physical

Electrochemical investigation of the P2-NaxCoO2 phase diagram

R. Berthelot et al.

NATURE MATERIALS (2011)

Review Multidisciplinary Sciences

Electrical Energy Storage for the Grid: A Battery of Choices

Bruce Dunn et al.

SCIENCE (2011)

Article Chemistry, Physical

Alteration of Ti 2p XPS spectrum for titanium oxide by low-energy Ar ion bombardment

S Hashimoto et al.

SURFACE AND INTERFACE ANALYSIS (2002)

Article Chemistry, Physical

Intercalation of water in P2, T2 and O2 structure Az[COxNi1/3-xMn2/3]O2

ZH Lu et al.

CHEMISTRY OF MATERIALS (2001)

Article Materials Science, Multidisciplinary

Photoemission and STM study of the electronic structure of Nb-doped TiO2

D Morris et al.

PHYSICAL REVIEW B (2000)