4.7 Article

Building blocks for a digital twin of additive manufacturing

Journal

ACTA MATERIALIA
Volume 135, Issue -, Pages 390-399

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.actamat.2017.06.039

Keywords

3D printing; Deposit geometry; Solidification parameters; Secondary dendrite arm spacing; Micro-hardness

Funding

  1. Department of Energy Nuclear Energy University Program [DE-NE0008280]
  2. American Welding Society research fellowship [179466]

Ask authors/readers for more resources

Properties and serviceability of additively manufactured components are affected by their geometry, microstructure and defects. These important attributes are now optimized by trial and error because the essential process variables cannot currently be selected from scientific principles. A recourse is to build and rigorously validate a digital twin of the additive manufacturing process that can provide accurate predictions of the spatial and temporal variations of metallurgical parameters that affect the structure and properties of components. Key building blocks of a computationally efficient first-generation digital twin of laser-based directed energy deposition additive manufacturing utilize a transient, three-dimensional model that calculates temperature and velocity fields, cooling rates, solidification parameters and deposit geometry. The measured profiles of stainless steel 316L and Alloy 800H deposits as well as the secondary dendrite arm spacing (SDAS) and Vickers hardness measurements are used to validate the proposed digital twin. The predicted cooling rates, temperature gradients, solidification rates, SDAS and micro-hardness values are shown to be more accurate than those obtained from a commonly used heat conduction calculation. These metallurgical building blocks serve as a phenomenological framework for the development of a digital twin that will make the expanding knowledge base of additive manufacturing usable in a practical way for all scientists and engineers. (C) 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available