4.8 Article

Rapid trait evolution drives increased speed and variance in experimental range expansions

Journal

NATURE COMMUNICATIONS
Volume 8, Issue -, Pages -

Publisher

NATURE PORTFOLIO
DOI: 10.1038/ncomms14303

Keywords

-

Funding

  1. National Science Foundation [DEB 0949595, DEB 0949619, 1144083]
  2. USDA via the Colorado Agricultural Experiment Station
  3. University of Colorado Boulder Libraries Open Access Fund

Ask authors/readers for more resources

Range expansions are central to two ecological issues reshaping patterns of global biodiversity: biological invasions and climate change. Traditional theory considers range expansion as the outcome of the demographic processes of birth, death and dispersal, while ignoring the evolutionary implications of such processes. Recent research suggests evolution could also play a critical role in determining expansion speed but controlled experiments are lacking. Here we use flour beetles (Tribolium castaneum) to show experimentally that mean expansion speed and stochastic variation in speed are both increased by rapid evolution of traits at the expansion edge. We find that higher dispersal ability and lower intrinsic growth rates evolve at the expansion edge compared with spatially nonevolving controls. Furthermore, evolution of these traits is variable, leading to enhanced variance in speed among replicate population expansions. Our results demonstrate that evolutionary processes must be considered alongside demographic ones to better understand and predict range expansions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available