4.7 Article

Genistein has beneficial effects on hepatic steatosis in high fat-high sucrose diet-treated rats

Journal

BIOMEDICINE & PHARMACOTHERAPY
Volume 91, Issue -, Pages 964-969

Publisher

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.biopha.2017.04.130

Keywords

AMPK; Genistein; NAFLD; SREBP-1; PPAR alpha

Funding

  1. Guangdong Natural Science Foundation [10151008901000063]

Ask authors/readers for more resources

Genistein, a kind of phytoestrogen abundant in soybeans, is beneficial for alleviating non-alcoholic fatty liver disease (NAFLD), but the specific mechanism was not clearly understood. This study was designed to determine the effect of genistein on NAFLD and explore the possible mechanism. 36 male Sprague-Dawley rats were divided into 4 groups: the control group, high fat-high sucrose diet (HFS) group, HFS with 4 mg/kg body weight genistein, and HFS with 8 mg/kg body weight genistein. 12 weeks later, serum and hepatic lipid profiles, liver histopathological examination were characterized. The protein levels of liver AMP-activated protein kinase (AMPK), phosphorylation of AMPK (p-AMPK), acetyl-CoA carboxylase (ACC), phosphorylation of ACC (p-ACC) and sterol regulatory element binding protein 1 (SREBP-1) were determined by western blot. mRNA expressions of fatty acid synthase gene (FAS) and glycerol-3-phosphate acyltransferase (GPAT), peroxisome proliferator-activated receptor a (PPARa), carnitine palmitoyl transfer enzyme-1 (CPT-1) and acyl-CoA oxidase (ACO) were measured by reverse transcription polymerase chain reaction (RT-PCR). Results showed that genistein effectively improved serum and hepatic lipid metabolism and diminished fat accumulation in liver. And the protein level of hepatic p-AMPK and p-ACC were increased, but SREBP-1 was decreased by genistein. Meanwhile, the mRNA levels of FAS and GPAT were lower, but PPARa, CPT-1, ACO were higher in rats treated with genistein compared with HFS group. Collectively, genistein can improve hepatic steatosis via activating AMPK, thus promoting fatty acid oxidation and inhibiting lipid synthesis in liver. (C) 2017 Elsevier Masson SAS. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available